Multi-Criteria Analysis for Solar Farm Location Suitability

Author:

Mierzwiak Michal1,Calka Beata1

Affiliation:

1. Institute of Geodesy, Faculty of Civil Engineering and Geodesy, Military University of Technology, Warsaw , Poland

Abstract

Abstract Currently the number of solar farms, as a type of renewable sources of energy, is growing rapidly. Photovoltaic power stations have many advantages, which is an incentive for their building and development. Solar energy is readily available and inexhaustible, and its production is environmentally friendly. In the present study multiple environmental and economic criteria were taken into account to select a potential photovoltaic farm location, with particular emphasis on: protected areas, land cover, solar radiation, slope angle, proximity to roads, built-up areas, and power lines. Advanced data analysis were used because of the multiplicity of criteria and their diverse influence on the choice of a potential location. They included the spatial analysis, the Weighted Linear Combination Technique (WLC), and the Analytic Hierarchy Process (AHP) as a decisionmaking method. The analysis was divided into two stages. In the first one, the areas where the location of solar farms was not possible were excluded. In the second one, the best locations meeting all environmental and economic criteria were selected. The research was conducted for the Legionowo District, using data from national surveying and mapping resources such as: BDOT10k (Database of Topographic Objects), NMT (Numerical Terrain Model), and lands and buildings register. Finally, several areas meeting the criteria were chosen. The research deals with solar farms with up to 40 kW power. The results of the study are presented as thematic maps. The advantage of the method is its versatility. It can be used not only for any area, but with little modification of the criteria, it can also be applied to choose a location for wind farms.

Publisher

Walter de Gruyter GmbH

Reference31 articles.

1. Asakereh A., Omid M., Alimardani R., & Sarmadian F. (2014). Developing a GISbased Fuzzy AHP Model for Selecting Solar Energy Sites in Shodirwan Region in Iran. International Journal of Advanced Science and Technology, vol. 68.

2. Bielecka E. (2015). Geographical data sets fitness of use evaluation. Geodetski Vestnik Vol. 59 (2015), No. 2, 335-348. DOI: 10.15292/geodetskivestnik. 2015.02.335-348.10.15292/geodetskivestnik.2015.02.335-348

3. Bober A., Calka B., & Bielecka E. (2016). Application of state survey and mapping resources for selecting sites suitable for solar farms. Proceedings of the 16th International Multidisciplinary Scientific GeoConferences SGEM, ISBN 978-619- 7105-58-2 / ISSN 1314-2704, June 28 - July 6, 2016, Book2 Vol. 1, 593-600 pp. DOI: 10.5593/SGEM2016/B21/S08.074.10.5593/SGEM2016/B21/S08.074

4. Brzezinska-Klusek M., Moscicka A., & Debowska A. (2013). OGNIWO - Tool for Integration Different Spatial Data Resources. 13th SGEM GeoConference on Informatics, Geoinformatics And Remote Sensing, SGEM2013 Conference Proceedings, ISBN 978-954-91818-9-0 / ISSN 1314-2704, June 16-22, 2013, Vol. 1, pp. 481-488. DOI:10.5593/SGEM2013/BB2.V1/S08.024.

5. Calka B., Bielecka E., & Zdunkiewicz K. (2016). Redistribution population data across a regular spatial grid according to buildings characteristics. Geodesy and Cartography. Volume 65, Issue 2, Pages 149-162. DOI: https://doi.org/10.1515/geocart-2016-0011.10.1515/geocart-2016-0011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3