The study of the particle size effect on the physical properties of TiO2/cellulose acetate composite films

Author:

Ali Hajer A.12,Hameed Nahida J.1

Affiliation:

1. Materials Science Branch, Department of Applied Sciences, University of Technology – Iraq , Baghdad , Iraq

2. Mesopotamian State Company of Seeds, Ministry of Agriculture , Baghdad , Iraq

Abstract

Abstract The cast method was used to synthesize cellulose acetate (CA)/titanium oxide (TiO2) composites by varying TiO2 particle sizes at different weight ratios of 1, 1.5, 2, 2.5, and 3 wt%. The relationship between structural diversity and performance was explored. Microstructures and chemical composition of as-prepared composite films were revealed using field-emission scanning electron microscopy and Fourier-transform infrared spectroscopy. The tensile strength increased from 46.8 MPa for pure CA to 54.7 MPa for the CA-1% micro-TiO2 composite and 81.7 MPa for the CA-2% nano-TiO2 composite, according to the mechanical properties. The tensile strength decreased due to some degrees of agglomeration of filler particles above a critical content. UV-vis transmittance spectra showed that pure CA was almost transparent, CA-micro-TiO2 films were less transparent than pure CA, and CA-nano-TiO2 films could efficiently block the light. XRD diffraction for the synthesized membranes was performed. The patterns of micro-TiO2 and nano-TiO2 were shown as 2θ = 25° for the anatase phase and 2θ = 18.5 for the pure CA film, respectively. The hydrophilicity of films was also measured using the sessile drop technique. The contact angle value for the pure CA was 61.3°. As the amount of TiO2 added to the films increased, the contact angles of the CA-micro TiO2 and CA-nano TiO2 films reduced from 53.2° to 29° and from 51.5° to 27°, respectively. The produced films’ improved wettability indicated that these films could be employed as filters.

Publisher

Walter de Gruyter GmbH

Subject

Mechanics of Materials,Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3