Effect of the covariance matrix type on the CPT based soil stratification utilizing the Gaussian mixture model

Author:

Thajeel Jawad K.1,Adel Raghad1,Ali Haneen Muhammed1,Shakir Ressol R.1

Affiliation:

1. Department of Civil Engineering, University of Thi-Qar , Thi-Qar , Iraq

Abstract

Abstract The identification and stratification of soils represent an essential step in designing various geotechnical structures. The cone penetration test (CPT) measurements are used widely to classify the soil; however, the soil classification charts such as the Robertson chart undergo uncertainty from different sources that make overlapping of soil types. This article aims to develop a probabilistic approach employing clustering with Gaussian mixture model, which can deal with the uncertainty and classify the soil based on CPT. The spatial parameters were obtained assuming the different types of covariance matrices. The data utilized in this study represent the results of CPT in four locations in Nasiriyah, Iraq. Both spatial and feature patterns were produced and used to classify the soil. This research revealed that the soils deduced from the Robertson chart were clay, silt, and sand. No gravelly sand appeared on the chart. The soil at shallow depth was clay soils, and it changed to be sandy silt at fairly great depth. They were close to the boundary curve between the stiff clay and sand zones and relatively existed at great depth. The probabilistic approach can detect the soil layers fast without experience-based decisions. Moreover, the type of assumed covariance matrix may affect the soil profile.

Publisher

Walter de Gruyter GmbH

Subject

Mechanics of Materials,Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3