Studying the effect of shear stud distribution on the behavior of steel–reactive powder concrete composite beams using ABAQUS software

Author:

Ali Yasar Ameer1,Falah Mayadah W.1,Ali Alaa Hussein1,Al-Mulali Mohammed Zuhear1,AL-Khafaji Zainab S.2,Hashim Tameem Mohammed1,AL Sa’adi Abdul Hadi Meteab1,Al-Hashimi Osamah3

Affiliation:

1. Building and Construction Techniques Engineering Department , Al-Mustaqbal University College , Babylon , Iraq

2. Department of Computer Engineering , Al-Turath University College , Baghdad , Iraq

3. Department of Civil Engineering , Liverpool John Moores University , Liverpool , L3 3AF , UK

Abstract

Abstract Using the ABAQUS software, this article presents a numerical investigation on the effects of various stud distributions on the behavior of composite beams. A total of 24 continuous 2-span composite beam samples with a span length of 1 m were examined (concrete slab at the top and steel I-section at the bottom). The concrete slab used is made of a reactive powder concrete with a compressive strength of 100.29 MPa. The total depth of each sample was 0.220 m. The samples were separated into four groups. The first group involved 6 specimens with shear connectors distributed into 2 rows with different distances (65, 85, 105, 150, 200, and 250 mm). The second group had the same spacing of shear connectors as the first group except that the shear connectors were distributed with one row along the longitudinal axis. The third group consisted of six specimens with single and double shear connectors distributed along the longitudinal axis. The fourth group included six specimens with one row of shear connectors arranged in a staggered distribution along the longitudinal axis. Results show that the optimum spacing was 105 mm in all groups and the deflection in group four fluctuated up and down due to the non-symmetrical distribution of the shear connectors.

Publisher

Walter de Gruyter GmbH

Subject

Mechanics of Materials,Materials Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3