Assessment of the beam configuration effects on designed beam–column connection structures using FE methodology based on experimental benchmarking

Author:

Satriawan Cakram Yudhifa Ganda1,Prabowo Aditya Rio1,Muttaqie Teguh2,Ridwan Ridwan3,Muhayat Nurul1,Carvalho Hermes4,Imaduddin Fitrian5

Affiliation:

1. Department of Mechanical Engineering, Sebelas Maret University , Surakarta , 57126 , Indonesia

2. Research Center for Hydrodynamics Technology, National Research and Innovation Agency (BRIN) , Surabaya , 60112 , Indonesia

3. Department of Mechanical Engineering, Universitas Merdeka Madiun , Madiun , 63133 , Indonesia

4. Department of Structural Engineering, Federal University of Minas Gerais , Belo Horizonte , 31270-901 , Brazil

5. Department of Mechanical Engineering, Islamic University of Madinah , Medina , 42351 , Saudi Arabia

Abstract

Abstract Purpose This article aims to investigate the structural behavior of beam–column joints subjected to axial force. The geometry used is the addition of a number of beam connections to the column, and the differences in the numbers of beams used are 1, 2, 4, and 4, denoted as V1, V2, V3, and V4, respectively. Design/methodology/approach In this work, the analysis was performed using the numerical finite element method with ABAQUS software. A benchmarking analysis was also conducted to validate the numerical results. Findings Several numerical simulations showed that of the variations tested, the V2 model demonstrated the highest force value among the four test models, at 130.883 kN. The displacement caused by the force was 227.32 mm, which was the lowest value among the four test models. On the other hand, the V3 model received the smallest force value among the four test models, at 24.576 kN, with a displacement of 227.49 mm. The displacement value was greater than that for the V2 model, further indicating that the V2 model was the stiffest of the four models tested. Originality/value This study shows that the influence of beam–column joint geometry is not limited to double-extended end-plate bolted connections.

Publisher

Walter de Gruyter GmbH

Subject

Mechanics of Materials,Materials Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3