On the fractional deformation of a linearly elastic bar

Author:

Lazopoulos Konstantinos A.1,Lazopoulos Anastasios K.2

Affiliation:

1. 14 Theatrou Str. , Rafina , 19009 Greece

2. Mathematical Sciences Department, Hellenic Army Academy Vari , 16673 Greece

Abstract

Abstract Fractional derivatives have non-local character, although they are not mathematical derivatives, according to differential topology. New fractional derivatives satisfying the requirements of differential topology are proposed, that have non-local character. A new space, the Λ-space corresponding to the initial space is proposed, where the derivatives are local. Transferring the results to the initial space through Riemann-Liouville fractional derivatives, the non-local character of the analysis is shown up. Since fractional derivatives have been established, having the mathematical properties of the derivatives, the linearly elastic fractional deformation of an elastic bar is presented. The fractional axial stress along the distributed body force is discussed. Fractional analysis with horizon is also introduced and the deformation of an elastic bar is also presented.

Publisher

Walter de Gruyter GmbH

Subject

Mechanics of Materials,Materials Science (miscellaneous)

Reference23 articles.

1. Machado JT, Kiryakova V, Mainardi F. Recent history of fractional calculus, Comm Nnlin Sci & Num Sim. 2011;16(3):1940-1153.

2. Leibnitz GW. Letter to G.A. L’Hospital. Leibn Math Schrif. 1849;2:301–2.

3. Liouville J. Sur le calcul des differentielles a indices quelconques. J. Ec. Polytech. 1832;13:71–162.

4. Riemann B. Versuch einer allgemeinen Auffassung der Integration and Differentiation. Gesammelte Werke. 1876;62.

5. Atanackovic TM, Stankovic B. Dynamics of a viscoelastic rod of fractional derivative type. Z Angew Math Mech. 2002;82(6):377– 86.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Λ-fractional buckling and post-buckling of beams;Archive of Applied Mechanics;2024-05-24

2. Equilibrium of Λ-fractional liquid crystals;Mechanics Research Communications;2024-03

3. On the $$\Lambda $$-fractional continuum mechanics fields;Continuum Mechanics and Thermodynamics;2024-02-14

4. On Λ-Fractional Wave Propagation in Solids;Mathematics;2023-10-06

5. Study of a sequential $$\psi $$-Hilfer fractional integro-differential equations with nonlocal BCs;Journal of Pseudo-Differential Operators and Applications;2023-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3