Affiliation:
1. IRAMAT-CRP2A, “Institut de Recherche sur les ArchéoMATériaux - Centre de Recherche en Physique Appliquée à l’Archéologie” , UMR5060 CNRS-Université de Bordeaux-Montaigne, Maison de l’Archéologie, Esplanade des Antilles, 33607 Pessac cedex , Paris , France
Abstract
Abstract
The paper focuses on single grain OSL dating of quartz extracted from known age archaeological mortars, potentially representing a new tool for dating the construction of historical buildings. Apart from SG-OSL measurements and annual dose rate determination, the samples are systematically studied by means of optical microscopy, EDX-SEM cartography and beta autoradiography in order to evaluate the possible microdosimetric heterogeneity of each sample, arising principally from local variations of potassium content. Besides the practical aspects concerning sampling, preparation and appropriate choice of measurement conditions, the paper aims at the differences in microstructure and in elementary composition between different mortars and attempts to evaluate the impact of these aspects on the dispersion of equivalent dose distributions. Finally, archaeological doses (paleodoses) are calculated by using central age model (CAM), minimum age model (MAM) and internal-external consistency criterion (IEU). The appropriateness of these models for the exploitation of the measured SG-OSL data as well as for a hypothesis on the estimation of the input parameter needed to run these models are discussed. Three categories of mortars were identified: samples without any exploitable SG-OSL signal, samples that could have been reliably dated and poorly bleached samples affected by microdosimetric variations whose dating still remains complicated. Finally, the hypothesis on distinguishing between reliable and questionable dating results is raised and the potentials of the method for dating mortars are pointed out.
Subject
Earth and Planetary Sciences (miscellaneous)
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献