Affiliation:
1. 9171 Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
Abstract
Abstract
This paper presents a survey on different showcases for potential measures on particle swarm optimization (PSO). First, a potential is analyzed to prove convergence to non-optimal points. Second, one can apply a minor modification to PSO to prevent convergence to non-optimal points by using an easy potential measure. Finally, analyzing this potential measure yields a reliable stopping criterion for the modified PSO.
Reference18 articles.
1. B. Bassimir, M. Schmitt, and R. Wanka. How much forcing is necessary to let the results of particle swarms converge? In Proc. Int. Conf. on Swarm Intelligence Based Optimization (ICSIBO), pages 98–105, 2014.
2. B. Bassimir, M. Schmitt, and R. Wanka. Self-adaptive potential-based stopping criteria for particle swarm optimization. arXiv, abs/1906.08867, 2019.
3. M. Clerc and J. Kennedy. The particle swarm – explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6:58–73, 2002.
4. R. C. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In Proc. 6th International Symposium on Micro Machine and Human Science, pages 39–43, 1995.
5. M. Jiang, Y. P. Luo, and S. Y. Yang. Particle swarm optimization – stochastic trajectory analysis and parameter selection. In F. T. S. Chan and M. K. Tiwari, editors, Swarm Intelligence – Focus on Ant and Particle Swarm Optimization, pages 179–198. 2007. Corrected version of [6].
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献