On divergence-based author obfuscation: An attack on the state of the art in statistical authorship verification

Author:

Bevendorff Janek1ORCID,Wenzel Tobias2,Potthast Martin2,Hagen Matthias3,Stein Benno1

Affiliation:

1. Bauhaus-Universität Weimar , Weimar , Germany

2. Leipzig University , Leipzig , Germany

3. Martin-Luther-Universität Halle-Wittenberg , Halle , Germany

Abstract

Abstract Authorship verification is the task of determining whether two texts were written by the same author based on a writing style analysis. Author obfuscation is the adversarial task of preventing a successful verification by altering a text’s style so that it does not resemble that of its original author anymore. This paper introduces new algorithms for both tasks and reports on a comprehensive evaluation to ascertain the merits of the state of the art in authorship verification to withstand obfuscation. After introducing a new generalization of the well-known unmasking algorithm for short texts, thus completing our collection of state-of-the-art algorithms for verification, we introduce an approach that (1) models writing style difference as the Jensen-Shannon distance between the character n-gram distributions of texts, and (2) manipulates an author’s writing style in a sophisticated manner using heuristic search. For obfuscation, we explore the huge space of textual variants in order to find a paraphrased version of the to-be-obfuscated text that has a sufficiently high Jensen-Shannon distance at minimal costs in terms of text quality loss. We analyze, quantify, and illustrate the rationale of this approach, define paraphrasing operators, derive text length-invariant thresholds for termination, and develop an effective obfuscation framework. Our authorship obfuscation approach defeats the presented state-of-the-art verification approaches, while keeping text changes at a minimum. As a final contribution, we discuss and experimentally evaluate a reverse obfuscation attack against our obfuscation approach as well as possible remedies.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3