Swarm robotics: Robustness, scalability, and self-X features in industrial applications

Author:

Heinrich Mary Katherine1,Soorati Mohammad Divband1,Kaiser Tanja Katharina1,Wahby Mostafa1,Hamann Heiko1ORCID

Affiliation:

1. Institute of Computer Engineering , University of Lübeck , Lübeck , Germany

Abstract

Abstract Applying principles of swarm intelligence to the control of autonomous systems in industry can advance our ability to manage complexity in prominent and high-cost sectors—such as transportation, logistics, and construction. In swarm robotics, the exclusive use of decentralized control relying on local communication and information provides the key advantage first of scalability, and second of robustness against failure points. These are directly useful in certain applied tasks that can be studied in laboratory environments, such as self-assembly and self-organized construction. In this article, we give a brief introduction to swarm robotics for a broad audience, with the intention of targeting future industrial applications. We then present a summary of four examples of our recently published research results with simple models. First, we present our approach to self-reconfiguration, which uses collective adjustment of swarm density in a dynamic setting. Second, we describe our robot experiments for self-organized material deployment in structured and semi-structured environments, applicable to braided composites. Third, we present our machine learning approach for self-assembly, motivated as a simple model developing foundational methods, which generates self-organizing robot behaviors to form emergent patterns. Fourth, we describe our experiments implementing a bioinspired model in a robot swarm, where we show self-healing of damage as the robots collectively locate a resource. Overall, the four examples we present concern robustness, scalability, and self-X features, which we propose as potentially relevant to future research in swarm robotics applied to industry sectors. We summarize these approaches as an introduction to our recent research, targeting the broad audience of this journal.

Funder

H2020 Future and Emerging Technologies

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Reference54 articles.

1. Carl Anderson, Guy Theraulaz, and Jean-Louis Deneubourg. Self-assemblages in insect societies. insectes sociaux. Insectes Sociaux, 49 (2): 99–110, 2002.

2. Yaneer Bar-Yam. Unifying principles in complex systems. In M. C. Roco and W. S. Bainbridge, editors, Converging Technology (NBIC) for Improving Human Performance, Kluwer, 2003.

3. Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence: From Natural to Artificial Systems, Oxford Univ. Press, New York, NY, 1999.

4. Richard Borkowski and Heiko Hamann. Evolving robot swarm behaviors by minimizing surprise: Results of simulations in 2-d on a torus. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’17, pages 1679–1680, ACM, New York, NY, USA, 2017. ISBN 978-1-4503-4939-0. 10.1145/3067695.3082548.

5. Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. Swarm robotics: a review from the swarm engineering perspective. Swarm Intelligence, 7 (1): 1–41, 2013. ISSN 1935-3812. 10.1007/s11721-012-0075-2.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3