Fast paraphrase extraction in Ancient Greek literature

Author:

Pöckelmann Marcus1,Dähne Janis1,Ritter Jörg1,Molitor Paul1ORCID

Affiliation:

1. Martin Luther University Halle-Wittenberg , Institute of Computer Science , Halle (Saale) , Germany

Abstract

Abstract In this paper, A shorter version of the paper appeared in German in the final report of the Digital Plato project which was funded by the Volkswagen Foundation from 2016 to 2019. [35], [28]. we present a method for paraphrase extraction in Ancient Greek that can be applied to huge text corpora in interactive humanities applications. Since lexical databases and POS tagging are either unavailable or do not achieve sufficient accuracy for ancient languages, our approach is based on pure word embeddings and the word mover’s distance (WMD) [20]. We show how to adapt the WMD approach to paraphrase searching such that the expensive WMD computation has to be computed for a small fraction of the text segments contained in the corpus, only. Formally, the time complexity will be reduced from O ( N · K 3 · log K ) \mathcal{O}(N\cdot {K^{3}}\cdot \log K) to O ( N + K 3 · log K ) \mathcal{O}(N+{K^{3}}\cdot \log K) , compared to the brute-force approach which computes the WMD between each text segment of the corpus and the search query. N is the length of the corpus and K the size of its vocabulary. The method, which searches not only for paraphrases of the same length as the search query but also for paraphrases of varying lengths, was evaluated on the Thesaurus Linguae Graecae® (TLG®) [25]. The TLG consists of about 75 · 10 6 75\cdot {10^{6}} Greek words. We searched the whole TLG for paraphrases for given passages of Plato. The experimental results show that our method and the brute-force approach, with only very few exceptions, propose the same text passages in the TLG as possible paraphrases. The computation times of our method are in a range that allows its application in interactive systems and let the humanities scholars work productively and smoothly.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Reference43 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3