Green synthesized silver and copper nanoparticles induced changes in biomass parameters, secondary metabolites production, and antioxidant activity in callus cultures of Artemisia absinthium L.

Author:

Hayat Khizar1,Ali Shahid2,Ullah Saif3,Fu Yujie1,Hussain Mubashir4

Affiliation:

1. Key Laboratory of Plant Ecology, North East Forestry University , Harbin 150040 , China

2. College of Life Science, North East Forestry University , Harbin 150040 , China

3. College of Economics and Management, North East Forestry University , Harbin 150040 , China

4. Department of Botany, PMAS Arid Agriculture University , Rawalpindi , Pakistan

Abstract

Abstract Artemisia absinthium L. is a highly medicinal plant with a broad range of biomedical applications. A. absinthium callus cultures were established in response to bio-fabricated single NPs (Ag and Cu) or a combination of both NPs (Ag and Cu) in different ratios (1:2, 2:1, 1:3, and 3:1) along with thidiazuron (TDZ) (4 mg/L) to elicit the biomass accumulation, production of non-enzymatic compounds, antioxidative enzymes, and antioxidant activity. Silver and copper nanoparticles (Ag and Cu NPs) were synthesized using the leaves of Moringa oleifera as reducing and capping agent and further characterized through UV-Visible spectroscopy and SEM. The 30 µg/L suspension of Ag and Cu NPs (1:2, 2:1) and 4 mg/L TDZ showed 100% biomass accumulation as compared to control (86%). TDZ in combination with Ag NPs enhanced biomass in the log phases of growth kinetics. The Cu NPs alone enhanced the superoxide dismutase activity (0.56 nM/min/mg FW) and peroxidase activity (0.31 nM/min/mg FW) in callus cultures. However, the combination of Ag and Cu NPs with TDZ induced significant total phenolic (7.31 µg/g DW) and flavonoid contents (9.27 µg/g DW). Furthermore, the antioxidant activity was highest (86%) in the Ag and Cu NPs (3:1) augmented media. The present study provides the first evidence of bio-fabricated single NPs (Ag and Cu) or a combination of both NPs (Ag and Cu) in different ratios (1:2, 2:1, 1:3, and 3:1) along with TDZ (4 mg/L) on the development of callus culture, production of endogenous enzymes, non-enzymatic components, and further antioxidant activity in callus cultures of A. absinthium.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry

Reference53 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3