Green nanotechnology synthesized silver nanoparticles: Characterization and testing its antibacterial activity

Author:

AlMasoud Najla1,Alhaik Hajar1,Almutairi Malak1,Houjak Asmaa1,Hazazi Khlood1,Alhayek Fatema1,Aljanoubi Sarah1,Alkhaibari Ahad1,Alghamdi Asma1,Soliman Dina A.2,Alomar Taghrid S.1,Awad Manal A.3

Affiliation:

1. Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University , Riyadh 11451 , Saudi Arabia

2. Department of Botany and Microbiology, Faculty of Science, King Saud University , Riyadh 11459 , Saudi Arabia

3. King Abdullah Institute for Nanotechnology, King Saud University , Riyadh 11451 , Saudi Arabia

Abstract

Abstract The green plant-mediated synthesis of silver (GPS-Ag) nanoparticles (NPs) has been increasingly popular due to its eco-friendliness, availability, cost-effectiveness, and the fact that it can be safely handled and possesses a broad variability of metabolites, such as antioxidant and antimicrobial activities. In this current study, the synthesis of AgNPs has been demonstrated using aqueous extracts of fresh leaves of Ficus carica and Salvia rosmarinus (rosemary) that reduced aqueous silver nitrate. This procedure made the synthesis of NPs possible, which was characterized by numerous analytical techniques such as ultraviolet-visible (UV-Vis) spectrophotometry, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, and dynamic light scattering studies. The visual observation indicated that the colour of aqueous silver nitrate turned brownish yellow after treatment with the fresh leaf extracts and was confirmed by UV-Vis spectra. In addition, the TEM analysis showed that the synthesized NPs well dispersed with average sizes less than 22 nm. Furthermore, AgNPs and aqueous leaf extracts of F. carica and rosemary were examined for their antimicrobial activities against different Gram-positive and Gram-negative bacteria strains. The results indicated that the AgNPs, derived from F. carica, have more antibacterial activities than others and inhibited bacterial growth.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3