Foliar applications of plant-based titanium dioxide nanoparticles to improve agronomic and physiological attributes of wheat (Triticum aestivum L.) plants under salinity stress

Author:

Mustafa Nilofar1,Raja Naveed Iqbal1,Ilyas Noshin1,Ikram Muhammad1,Mashwani Zia-ur-Rehman1,Ehsan Maria1

Affiliation:

1. Department of Botany, PMAS Arid Agriculture University , Rawalpindi , Punjab 46300 , Pakistan

Abstract

Abstract The present study was carried out to investigate the beneficial and toxicological effect of plant-based titanium dioxide nanoparticles (TiO2 NPs) on the morphophysiological attributes of wheat plants under salinity stress. The biogenesis of titanium dioxide nanoparticles was accomplished by using the extract of Buddleja asiatica L. leaves followed by characterization through UV visible spectroscopy, SEM, FTIR, and EDX. NaCl salt was applied in two different concentrations after 21 days of germination followed by foliar applications of various concentrations of TiO2 NPs (20, 40, 60, 80 mg/L) to salinity-tolerant (Faisalabad-08) and salinity-susceptible (NARC-11) wheat varieties after 10–15 days of application of salt stress. Salinity stress showed remarkable decrease in morphophysiological attributes of selected wheat varieties. Magnificent improvement in plant height, dry and fresh weight of plants, shoot and root length, root and shoot fresh and dry weight, number of leaves per plant, RWC, MSI, chlorophyll a and b, and total chlorophyll contents has been observed when 40 mg/L of TiO2 NPs was used. However, the plant morphophysiological parameters decreased gradually at higher concentrations (60 and 80 mg/L) in both selected wheat varieties. Therefore, 40 mg/L concentration of TiO2 NPs was found most preferable to increase the growth agronomic and physiological attributes of selected wheat varieties under salinity.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3