Influence of strut angle and radius on the energy absorption and failure mechanisms in 3-strut, 4-strut and 6-strut lattice structures

Author:

Ture Mustafa Okan1ORCID,Evis Zafer1ORCID

Affiliation:

1. Department of Engineering Science , Middle East Technical University , Ankara , Cankaya , Türkiye

Abstract

Abstract 3D-printed truss structures have remarkable potential in the aerospace and weight-critical technologies fields. However, design parameters need to be carefully considered. A low overhang angle or diameter can result in discrepancies. This research presents an approach by examining the effect of strut overhang angle and radius on the mechanical properties of 3-, 4- and 6-strut lattice structures under compressive loading. 1.6- and 2.4-mm diameter struts were designed with 45°, 50°, 55° and 60° overhang angle strut lattices. Experiments were simulated and compared with test results for each parameter. Even if joint regions have little effect on specimens’ density, it has a remarkable effect on mechanical properties of the specimen. To simulate this, many studies were investigated to simulate joint regions. The study’s goal is to deepen the understanding of how design variations in strut lattice structures influence their energy-absorbing characteristic and mechanical behavior, using a combination of static tests and finite element analysis for validation. This insight is crucial for optimizing lattice design to balance weight, strength, and energy-absorbing capacity effectively. The experimental test result and numerical result showed rather good agreement. It is observed that joint regions, overhang angle, and diameters were the main parameters affecting specimens’ mechanical behavior.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3