Numerical and experimental investigation of the effect of heat input on weld bead geometry and stresses in laser welding

Author:

Turan Mehmet K.1,Yuce Celalettin1,Karpat Fatih1

Affiliation:

1. Mechanical Engineering , 37523 Bursa Uludag University , Bursa 16059 , Türkiye

Abstract

Abstract Nowadays, laser welding is a powerful joining method. Thanks to the advantages it has, its usage area is increasing day by day. However, getting the desired result from the laser welding process is possible with the proper welding parameter selections. Otherwise, many problems may be encountered, including significantly incomplete penetration. For this reason, parameter selection has been discussed in many studies in the literature. At this point, validated numerical simulation models are precious. Since these models reduce experiment costs and save time. Especially numerical simulation of the structural steel, which is the one of most used materials, is crucial. In this study, the effects of laser power (LP) and welding speed (WS), which are among the vital parameters of laser welding, on weld width and stress were investigated numerically and statistically. Structural steel was selected as the material, and the Taguchi method was carried out for the simulation case study design. Simufact Welding software was used for simulation studies, and simulations were carried out thermomechanical. Thus, more realistic results were obtained via the thermomechanical method. One of the simulation results was verified through an experimental study. The results were evaluated with signal-to-noise (S/N) ratio and a statistical analysis of variance (ANOVA), and as a result of the study, it was seen that the welding speed was a more effective parameter, the optimal parameter combination was found to be 3500 W for laser power and 40 mm/s for welding speed to get maximum weld width and minimum equivalent stress. In addition, it was observed that correctly created simulation studies may provide very close results to experimental studies.

Funder

The Scientific and Technological Research Council of Türkiye

Bursa Uludag University Commission of Scientific Research Projects

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3