A novel chaotic artificial rabbits algorithm for optimization of constrained engineering problems

Author:

Duzgun Erhan1,Acar Erdem2,Yildiz Ali Riza3

Affiliation:

1. Department of Mechanical Engineering , TOBB ETÜ , Söğütözü Caddesi No: 43, Söğütözü , Ankara , 06560 , Türkiye

2. TOBB ETÜ , Ankara , Türkiye

3. Department of Mechanical Engineering , 37523 Bursa Uludag University , Görükle , Bursa , 16059 , Türkiye

Abstract

Abstract This study introduces a novel metaheuristic algorithm of optimization named Chaotic Artificial Rabbits Optimization (CARO) algorithm for resolving engineering design problems. In the newly introduced CARO algorithm, ten different chaotic maps are used with the recently presented Artificial Rabbits Optimization (ARO) algorithm to manage its parameters, eventually leading to an improved exploration and exploitation of the search. The CARO algorithm and familiar metaheuristic competitor algorithms were experimented on renowned five mechanical engineering problems of design, in brief; pressure vessel design, rolling element bearing design, tension/compression spring design, cantilever beam design and gear train design. The results indicate that the CARO is an outstanding algorithm compared with the familiar metaheuristic algorithms, and equipped with the best-optimized parameters with the minimal deviation in each case study. Metaheuristic algorithms are utilized to succeed in an optimal design in engineering problems targeting to achieve lightweight designs. In this present study, the optimum design of a vehicle brake pedal piece was achieved through topology and shape optimization methods. The brake pedal optimization problem in terms of the mass minimization is solved properly by using the CARO algorithm in comparison to familiar metaheuristic algorithms in the literature. Consequently, results indicate that the CARO algorithm can be effectively utilized in the optimal design of engineering problems.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3