The Influence of Mg(II) and Ca(II) Ions on Rutin Autoxidation in Weakly Alkaline Aqueous Solutions

Author:

Živanović Slavoljub C.,Nikolić Ružica S.,Nikolić Goran M.

Abstract

Summary Rutin (quercetin-3-O-rutinoside) is one of the most abundant bioflavonoids with various biological and pharmacological activities. Considering the ubiquitous presence of Mg(II) and Ca(II) ions in biological systems we decided to investigate their influence on the autoxidation of rutin in weakly alkaline aqueous solutions. Changes in UV-Vis spectra recorded during the rutin autoxidation in aqueous solution at pH 8.4 revealed that this process was very slow in the absence of metal ions. The presence of Mg(II) and, especially Ca(II) ion, increased the transformation rate of rutin. UV-Vis spectra recorded after prolonged autoxidation indicated the formation of humic acidlike products in the presence of Mg(II) and Ca(II) ions. Four new compounds formed during the initial stage of rutin autoxidation in the presence of Mg(II) and Ca(II) ions were detected by HPLCDAD. Based on the analysis of their DAD UV-Vis spectra and comparison of their retention times with the retention time value for rutin, we concluded that the initial rutin transformation products were formed by the water addition on double bond in ring C and hydroxylation of ring B. A very small decrease of the initial rutin concentration (4%) was observed by HPLC-DAD in the absence of metal ions for the period of 90 minutes. However, rutin concentration decrease was much larger in the presence of Mg(II) and Ca(II) ions (14% and 24%, respectively). The more pronounced effect of Ca(II) ion on the rutin autoxidation may be explained by the stronger binding of Mg(II) ion to rutin and thus greater stabilizing effect on reaction intermediates caused by its higher ionic potential (charge/ionic radius ratio) in comparison to Ca(II) ion. The results of this study may contribute to the better understanding of interactions of Mg(II) and Ca(II) ions with natural phenolic antioxidants which are important for their various biological activities.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3