Protective Effects of Agmatine against Chlorpromazine- Induced Toxicity in the Liver of Wistar Rats

Author:

Dejanović Bratislav,Stevanović Ivana,Ninković Milica,Stojanović Ivana,Lavrnja Irena,Radičević Tatjana

Abstract

SummaryThe metabolic pathways of chlorpromazine (CPZ) toxicity were tracked by assessing oxidative/nitrosative stress markers. The main objective of the study was to test the hypothesis that agmatine (AGM) prevents oxidative/nitrosative stress in the liver of Wistar rats 15 days after administration of CPZ. All tested substances were administered intraperitoneally (i.p.) for 15 consecutive days. The rats were divided into four groups: the control group (C, 0.9 % saline solution), the CPZ group (CPZ, 38.7 mg/kg b.w.), the CPZ+AGM group (AGM, 75 mg/kg b.w. immediately after CPZ, 38.7 mg/kg b.w. i.p.) and the AGM group (AGM, 75 mg/kg b.w.).Rats were decapitated 15 days after the appropriate treatment. In the CPZ group, CPZ concentration was significantly increased compared to C values (p<0.01), while AGM treatment induced the significant decrease in CPZ concentration in the CPZ+AGM group (p<0.05) and the AGM group (p<0.01). CPZ application to healthy rats did not lead to any changes of lipid peroxidation in the liver compared to the C group, but AGM treatment decreased that parameter compared to the CPZ group (p<0.05). In CPZ liver homogenates, nitrite and nitrate concentrations were increased compared to controls (p<0.001), and AGM treatment diminished that parameter in the CPZ group (p<0.05), as well as in the AGM group (p<0.001). In CPZ animals, glutathione level and catalase activity were decreased in comparison with C values (p<0.01 respectively), but AGM treatment increased the activity of catalase in comparison with CPZ animals (p<0.05 respectively). Western blot analysis supported biochemical findings in all groups. Our results showed that treatment with AGM significantly supressed the oxidative/nitrosative stress parameters and restored antioxidant defense in rat liver.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3