The Hydrogen Challenge: Requirements for Future Materials
Author:
Fechte-Heinen R.12, Fuhrländer D.3, Mehner A.1, Decho H.1, Castens M.1, Burkart K.1, Tinscher R.1, Stührmann T.3
Affiliation:
1. Leibniz-Institut für Werkstofforientierte Technologien – IWT , Badgasteiner Straße 3 , Bremen Germany 2. MAPEX, Center for Materials and Processes, Universität Bremen , Bibliothekstraße 1 , Bremen Germany 3. Universität Bremen, Fachgebiet Resiliente Energiesysteme , Enrique-Schmidt-Str. 7 , Bremen Germany
Abstract
Abstract
The use of hydrogen as a climate-friendly energy source is gaining strongly in importance, as it represents the only solution for short- to medium-term decarbonization for some industrial sectors, such as the steel and basic materials industries. Increasing innovation density and scaling of electrolysis is creating a broader range of uses and applications. So-called green hydrogen can be used as a raw material (basic industry), process gas (direct steel reduction), burner gas (heat treatment) or energy carrier (e.g. transport, energy storage).
Depending on the application, hydrogen acts in a cryogenic liquid or gaseous state on the materials with which it comes into contact. This gives rise to various technical requirements that need to be controlled. For the application of hydrogen in large-scale and mass production, appropriate materials and processes will have to be developed that can be used economically and scalably.
Considerable R&D activities will be required in the future, from the processing of the starting materials, their property adjustment by heat treatment and coating, to manufacturing processes and testing. This article highlights the current status for selected areas and discusses future material requirements and development potential.
Publisher
Walter de Gruyter GmbH
Subject
Materials Chemistry,Metals and Alloys,Industrial and Manufacturing Engineering
Reference55 articles.
1. Agora Energiewende: Energiesicherheit und Klimaschutz vereinen – Maßnahmen für den Weg aus der fossilen Energiekrise, 2022, open access 2. Hosseini, S. E.: Transition away from fossil fuels toward renewables: lessons from Russia-Ukraine crisis. Future Energy 1 (2022) 1, pp. 2–5 3. Köhler, J.; Geels, F. W.; Kern, F.; Markard, J.; Onsongo, E.; Wieczorek, A.; Alkemade, F.; Avelino, F.; Bergek, A.; Boons, F. et. al: An agenda for sustainability transitions research: State of the art and future directions. Environ. Innov. Soc. Transitions 31 (2019), pp. 1–32, DOI:10.1016/j.eist.2019.01.004 4. Schreiber, S.; Zöphel, C.; Möst, D.: Optimal Energy Portfolios in the Electricity Sector: Trade-Offs and Interplay Between Different Flexibility Options. The Future European Energy System: Renewable Energy, Flexibility Options and Technological Progress. D. Möst, S. Schreiber, A. Herbst, M. Jakob, A. Martino, W.-R. Poganietz (eds.), Springer, Cham, 2021, pp. 177–198, DOI:10.1007/978-3-030-60914-6_10, open access 5. Herbst, A.; Schreiber, S.; Poganietz, W.-R.; Martino, A.; Möst, D.: Scenario Storyline in Context of Decarbonization Pathways for a Future European Energy System. The Future European Energy System: Renewable Energy, Flexibility Options and Technological Progress. D. Möst, S. Schreiber, A. Herbst, M. Jakob, A. Martino, W.-R. Poganietz (eds.), Springer, Cham, 2021, pp. 9–25. DOI:10.1007/978-3-030-60914-6_2, open access
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|