Comparison of selenium-induced antioxidant responses and bioaccumulation in two strains of the halotolerant alga Dunaliella salina

Author:

Hamidkhani Aida1,Asgarani Ezat1,Saboora Azra2,Hejazi Mohammad Amin3

Affiliation:

1. Department of Biotechnology , Faculty of Biological Sciences, Alzahra University , Tehran 1993891176 , IR Iran

2. Department of Plant Science , Faculty of Biological Sciences, Alzahra University , Tehran , IR Iran

3. Department of Food Biotechnology, Branch for Northwest & West Region , Agricultural Biotechnology Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO) , Tabriz , IR Iran

Abstract

Abstract Selenium water pollution is an increasing environmental problem that requires investigation of cellular responses of aquatic primary producer organisms, especially algae. Industrial wastewater with selenium contamination is often coupled with high salinity (60–70). In this study, the biochemical responses of two strains of the halotolerant alga (Dunaliella salina Hoze-soltan and Dunaliella salina CCAP 19/18) to different selenium concentrations were evaluated. Although at high selenium concentrations both strains showed lipid peroxidation and cell number reduction, Dunaliella salina Hoze-soltan was less affected. Higher selenium tolerance in this strain might be attributed to the better activity of resistance responses like proline, total reducing sugar, superoxide dismutase (SOD) and peroxidase (POX), even at the high selenium concentrations. Catalase (CAT) had no significant role for protection against selenium toxicity as its activity declined in both strains with rising selenium concentration. Both strains accumulated selenium intracellularly, but the accumulation was about three-fold higher in Dunaliella salina Hoze-soltan than in the other strain. It can be concluded that Dunaliella salina Hoze-soltan may be a better candidate for selenium bioremediation of a high salinity environment. The data obtained from this study could be useful for improvement of algal ability for high efficiency selenium bioremediation in hypersaline environments.

Publisher

Walter de Gruyter GmbH

Subject

Plant Science,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Reference68 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3