Sequence comparison and expression analysis of an inferred Na+/Pi cotransporter gene in the marine diatom Skeletonema tropicum

Author:

Hung Shr-Hau12,Lu Yung-Hsiu13,Chung Chih-Ching4,Shih Chi-Yu1,Gong Gwo-Ching45,Chang Jeng145

Affiliation:

1. Institute of Marine Biology , National Taiwan Ocean University , Keelung 20224 , Taiwan, ROC

2. Department of Chemistry and Biochemistry , San Diego State University , San Diego , CA 92182 , USA

3. Medical Science and Technology Building , 8F-201, Sec. 2, Shih-Pai Road , Taipei 11217 , Taiwan, ROC

4. Institute of Marine Environment and Ecology , National Taiwan Ocean University , Keelung 20224 , Taiwan, ROC

5. Center of Excellence for the Oceans, National Taiwan Ocean University , Keelung 20224 , Taiwan, ROC

Abstract

Abstract Unicellular algae have evolved to express many forms of high-affinity phosphate transporters, and homologs of these proteins are broadly distributed in yeast, fungi, higher plants, and vertebrates. In this report, an effort has been made to characterize such a transporter gene, StPHO, in the marine diatom Skeletonema tropicum. The primers used for polymerase chain reaction were designed by referring to a homologous gene in a prasinophyte, and the full-length (1692 bp) cDNA of StPHO was then cloned and sequenced. Sequence alignments and secondary structure prediction indicated that StPHO is a gene that encodes a type III Na+/Pi cotransporter (SLC20 family). To study the function of StPHO, specific concentrations of inorganic phosphate (Pi) were used to alter the physiological status of S. tropicum. In each treatment, samples were collected for the measurements of StPHO mRNA, [PO4 3−], cell abundance, the maximal photochemical efficiency of photosystem II (F v /F m ), and alkaline phosphatase activity (APA). The results indicated that the ambient [PO4 3−] strongly affected the population growth and related physiological parameters of S. tropicum. The transcription of StPHO was fully repressed when the [PO4 3−] was greater than 1 μM but increased approximately 100-fold when the ambient [PO4 3−] decreased to 0.02 μM. Within this [PO4 3−] range, the regression equations are Y = −0.6644X + 0.9034 and Y = −0.5908X + 0.8054 for Pi-starved and Pi-limited treatments, respectively. This trend of gene expression suggested that StPHO plays an important role in the uptake of [PO4 3−], and StPHO may serve as a useful molecular biomarker for Pi-stressed diatom populations in marine ecosystems.

Funder

Ministry of Science and Technology

Publisher

Walter de Gruyter GmbH

Subject

Plant Science,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Reference35 articles.

1. Armbrust, E.V. (2009). The life of diatoms in the world’s oceans. Nature 459: 185–192.

2. Chung, C.-C., Hwang, S.-P.L., and Chang, J. (2003). Identification of a high-affinity phosphate transporter gene in a prasinophyte alga, Tetraselmis chui, and its expression under nutrient limitation. Appl. Environ. Microbiol. 69: 754–759.

3. Chung, C.-C., Hwang, S.-P.L., and Chang, J. (2005). Cooccurrence of ScDSP gene expression, cell death, and DNA fragmentation in a marine diatom, Skeletonema costatum. Appl. Environ. Microbiol. 71: 8744–8751.

4. Cruz de Carvalho, M.H., Sun, H.-X., Bowler, C., and Chua, N.-H. (2016). Noncoding and coding transcriptome responses of a marine diatom to phosphate fluctuations. New Phytol. 210: 497–510.

5. Daram, P., Brunner, S., Rausch, C., Steiner, C., Amrhein, N., and Bucher, M. (1999). Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis. Plant Cell 11: 2153–2166.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3