Biodegradation of Naphthalene by Free and Alginate Entrapped Pseudomonas sp.

Author:

Seoud Mahmoud Abou1,Maachi Rachida1

Affiliation:

1. Laboratoire de cinétique et catalyse, Institut de chimie industrielle, Université des Sciences et de la technologie Houari Boumediene, BP32 Elalia, Bab Ezzouar, Alger (16111), Algeria

Abstract

Abstract Naphthalene degradation by freely suspended and immobilized cells of Pseudomonas sp. isolated from contaminated effluents has been investigated in batch cultures and continuously in a packed bed reactor. Naphthalene concentration was varied from 25 mᴍ to 75 mᴍ, the temperature (30 °C) and pH (7.0) were kept constant. The results showed good acclimation of the strain to carbon source and degradation rate was highly affected by initial concentration. Alginate-entrapped cells have given good yields although initial rates were not as high as those encountered with free cells. A first order exponential decay kinetic model was proposed with values of parameters for each initial concentration. A laboratory scale packedbed bioreactor was designed using parameters calculated above and continuous experiments were realized at different flow rates (100 to 200 ml/h), with different feed concentrations and operating during 30 days. The conversion at low feed concentrations and low flow rates was complete whereas at high flow rates and high concentrations it was less efficient because of diffusional limitations and short residence time.

Publisher

Walter de Gruyter GmbH

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3