The crystal structure of Cs2S2O3·H2O

Author:

Winkler Verena1,Schlosser Marc1,Pfitzner Arno2

Affiliation:

1. Institut für Anorganische Chemie , Universität Regensburg , Universitätsstraße 31, D-93040 Regensburg, Germany

2. Institut für Anorganische Chemie , Universität Regensburg , Universitätsstraße 31, D-93040 Regensburg, Germany, Fax: +49-941-943-814551

Abstract

Abstract A reinvestigation of the alkali metal thiosulfates has led to the new phase Cs2S2O3·H2O. At first cesium thiosulfate monohydrate was obtained as a byproduct of the synthesis of Cs4In2S5. Further investigations were carried out using the traditional synthesis reported by J. Meyer and H. Eggeling. Cs2S2O3·H2O crystallizes in transparent, colorless needles. The crystal structure of the title compound was determined by single crystal X-ray diffraction at room temperature: space group C2/m (No. 12), unit cell dimensions: a = 11.229(4), b = 5.851(2), c = 11.260(5) Å, β = 95.89(2)°, with Z = 4 and a cell volume of V = 735.9(5) Å3. The positions of all atoms including the hydrogen atoms were located in the structure refinement. Cs2S2O3·H2O is isotypic with Rb2S2O3·H2O. Isolated tetrahedra [S2O3]2− are coordinated by the alkali metal cations, and in addition they serve as acceptors for hydrogen bonding. For both Cs atoms the shortest distances are observed to oxygen atoms of the S2O3 2− anions whereas the terminating sulfur atom has its shortest contacts to the water hydrogen atoms. Thus, an extended hydrogen bonding network is formed. The title compound has also been characterized by IR spectroscopy. IR spectroscopy reveals the vibrational bands of the water molecules at 3385 cm−1. They show a red shift in the OH stretching and bending modes as compared to free water. This is due both to the S···H hydrogen bonding and to the coordination of H2O molecules to the cesium atoms.

Publisher

Walter de Gruyter GmbH

Subject

General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3