Selection bias and multiple inclusion criteria in observational studies

Author:

Zetterstrom Stina1,Waernbaum Ingeborg1

Affiliation:

1. Department of Statistics , Uppsala University , Uppsala , Sweden

Abstract

Abstract Objectives Spurious associations between an exposure and outcome not describing the causal estimand of interest can be the result of selection of the study population. Recently, sensitivity parameters and bounds have been proposed for selection bias, along the lines of sensitivity analysis previously proposed for bias due to unmeasured confounding. The basis for the bounds is that the researcher specifies values for sensitivity parameters describing associations under additional identifying assumptions. The sensitivity parameters describe aspects of the joint distribution of the outcome, the selection and a vector of unmeasured variables, for each treatment group respectively. In practice, selection of a study population is often made on the basis of several selection criteria, thereby affecting the proposed bounds. Methods We extend the previously proposed bounds to give additional guidance for practitioners to construct i) the sensitivity parameters for multiple selection variables and ii) an alternative assumption free bound, producing only logically feasible values. As a motivating example we derive the bounds for causal estimands in a study of perinatal risk factors for childhood onset Type 1 Diabetes Mellitus where selection of the study population was made by multiple inclusion criteria. To give further guidance for practitioners, we provide a data learner in R where both the sensitivity parameters and the assumption-free bounds are implemented. Results The assumption-free bounds can be both smaller and larger than the previously proposed bounds and can serve as an indicator of settings when the former bounds do not produce feasible values. The motivating example shows that the assumption-free bounds may not be appropriate when the outcome or treatment is rare. Conclusions Bounds can provide guidance in a sensitivity analysis to assess the magnitude of selection bias. Additional knowledge is used to produce values for sensitivity parameters under multiple selection criteria. The computation of values for the sensitivity parameters is complicated by the multiple inclusion/exclusion criteria, and a data learner in R is provided to facilitate their construction. For comparison and assessment of the feasibility of the bound an assumption free bound is provided using solely underlying assumptions in the framework of potential outcomes.

Funder

Vetenskapsrådet

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Epidemiology

Reference33 articles.

1. Berhan, Y., I. Waernbaum, T. Lind, A. Möllsten, G. Dahlquist, and S. C. D. S. Group. 2011. “Thirty Years of Prospective Nationwide Incidence of Childhood Type 1 Diabetes: The Accelerating Increase by Time Tends to Level off in sweden.” Diabetes 60 (2): 577–81, https://doi.org/10.2337/db10-0813.

2. de Araújo, T. V. B., R. A. D. A. Ximenes, D. D. B. Miranda-Filho, W. V. Souza, U. R. Montarroyos, A. P. L. de Melo, S. Valongueiro, M. D. F. P. M. de Albuquerque, C. Braga, S. P. B. Filho, M. T. Cordeiro, E. Vazquez, D. D. C. S. Cruz, C. M. P. Henriques, L. C. A. Bezerra, P. M. D. S. Castanha, R. Dhalia, E. T. A. Marques-Júnior, C. M. T. Martelli, L. C. Rodriques, C. Dhalia, M. Santos, F. Cortes, W. Kleber de Oliviera, G. Evelim Coelho, J. J. Cortez-Escalante, C. F. Campelo de Albuquerque de Melo, P. Ramon-Pardo, S. Aldighieri, J. Mendez-Rico, M. Espinal, L. Torres, A. Nassri Hazin, A. Van der Linden, M. Coentro, G. Santiago Dimech, R. Siqueira de Assunaco, P. Ismael de Carvalho, and V. Felix Oliveira. 2018. “Association between Microcephaly, Zika Virus Infection, and Other Risk Factors in Brazil: Final Report of a Case-Control Study.” The Lancet Infectious Diseases 18 (3): 328–36, https://doi.org/10.1016/s1473-3099(17)30727-2.

3. Ding, P., and L. W. Miratrix. 2015. “To Adjust or Not to Adjust? Sensitivity Analysis of M-Bias and Butterfly-Bias.” Journal of Causal Inference 3 (1): 41–57. https://doi.org/10.1515/jci-2013-0021.

4. Ding, P., and T. J. VanderWeele. 2016. “Sensitivity Analysis without Assumptions.” Epidemiology 27 (3): 368. https://doi.org/10.1097/ede.0000000000000457.

5. Flanders, W. D., and M. J. Khoury. 1990. “Indirect Assessment of Confounding: Graphic Description and Limits on Effect of Adjusting for Covariates.” Epidemiology 1 (3): 239–46. https://doi.org/10.1097/00001648-199005000-00010.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3