Predicting Heart Diseases from Large Scale IoT Data Using a Map-Reduce Paradigm

Author:

Abd Faris Mohammad1,Manaa Mehdi Ebady2

Affiliation:

1. University of Babylon, College of IT, Department of Information Networks

2. University of Babylon, College of IT, Department of Information Networks; Email: meh_man12@yahoo.com

Abstract

AbstractOver the last few years, the huge amount of data represented a major obstacle to data analysis. Big data implies that the volume of data undergoes a faster progress than computational speeds, thereby demanding a larger data storage capacity. The Internet of Things (IoT) is a main source of data that is closely related to big data, as the former extends to a variety of fields such as healthcare, entertainment, and disaster control. Despite the different advantages associated with the composition of Big Data analytics and IoT, there are a number of complex difficulties and issues involved that need to be resolved and managed to ensure an accurate data analysis. Some of these solutions include the utilization of map-reduce techniques, processing, and large data scale, particularly for the relatively less time that this method requires to process large data from the Internet of Things. Machine learning algorithms of this kind are often implemented in the healthcare sector. Medical facilities need to be advanced so that more appropriate decisions can be made in terms of patient diagnosis and treatment options. In this work, two datasets have been used: the first set, used in the prediction of heart diseases, obtained an accuracy rate of 84.5 for RF and 83 for J48, whereas the second dataset is related to weather stations (automated sensors) and obtained accuracy rates of 88.5 and 86.5 for RF and J48, respectively.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3