Artificial intelligence-based public safety data resource management in smart cities

Author:

Zhao Hang1

Affiliation:

1. Finance and Economics School, Chengdu Polytechnic , Chengdu 610041, Sichuan , China

Abstract

Abstract With the development of urbanization, urban public safety is becoming more and more important. Urban public safety is not only the foundation of urban development, but also the basic guarantee for the stability of citizens’ lives. In the context of today’s artificial intelligence (AI), the concept of smart cities is constantly being practiced. Urban public safety has also ushered in some new problems and challenges. To this end, this article aimed to use AI technology to build an efficient public safety data resource management system in a smart city environment. A major goal of AI research was to enable machines to perform complex tasks that normally require human intelligence. In this article, a data resource management system was constructed according to the city security system and risk data sources, and the data processing method of neural network (NN) was adopted. Factors affecting urban public safety were processed as indicator data. In this article, the feedforward back-propagation neural network (BPNN) was used to predict the index data in real time, which has realized the management functions of risk monitoring and early warning of public safety data indicators. The BPNN model was used to test the urban risk early warning capability of the constructed system. BPNN is a multi-layer feed-forward NN trained according to the error back-propagation algorithm, which is one of the most widely used NN models. The results showed that the average prediction accuracy of the BPNN model for indicator prediction was about 89%, which was 16.1% higher than that of the traditional NN model. The average risk warning accuracy rate of the BPNN model was 90.3%, which was 16.5% higher than that of the traditional NN model. This shows that the BPNN model using AI technology in this article can more efficiently and accurately carry out early warning of risk and management of urban public safety.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3