Efficient Stock-Market Prediction Using Ensemble Support Vector Machine

Author:

Nti Isaac Kofi1,Adekoya Adebayo Felix2,Weyori Benjamin Asubam2

Affiliation:

1. Department of Computer Science and Informatics, University of Energy and Natural Resources, Sunyani, Ghana; Department of Computer Science, Sunyani Technical University, Sunyani, Ghana;

2. Department of Computer Science and Informatics, University of Energy and Natural Resources, Sunyani, Ghana;

Abstract

AbstractPredicting stock-price remains an important subject of discussion among financial analysts and researchers. However, the advancement in technologies such as artificial intelligence and machine learning techniques has paved the way for better and accurate prediction of stock-price in recent years. Of late, Support Vector Machines (SVM) have earned popularity among Machine Learning (ML) algorithms used for predicting stock price. However, a high percentage of studies in algorithmic investments based on SVM overlooked the overfitting nature of SVM when the input dataset is of high-noise and high-dimension. Therefore, this study proposes a novel homogeneous ensemble classifier called GASVM based on support vector machine enhanced with Genetic Algorithm (GA) for feature-selection and SVM kernel parameter optimisation for predicting the stock market. The GA was introduced in this study to achieve a simultaneous optimal of the diverse design factors of the SVM. Experiments carried out with over eleven (11) years’ stock data from the Ghana Stock Exchange (GSE) yielded compelling results. The outcome shows that the proposed model (named GASVM) outperformed other classical ML algorithms (Decision Tree (DT), Random Forest (RF) and Neural Network (NN)) in predicting a 10-day-ahead stock price movement. The proposed (GASVM) showed a better prediction accuracy of 93.7% compared with 82.3% (RF), 75.3% (DT), and 80.1% (NN). It can, therefore, be deduced from the fallouts that the proposed (GASVM) technique puts-up a practical approach feature-selection and parameter optimisation of the different design features of the SVM and thus remove the need for the labour-intensive parameter optimisation.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3