A novel similarity measure of link prediction in bipartite social networks based on neighborhood structure

Author:

Sarhangnia Fariba1,Mahjoobi Shima2,Jamshidi Samaneh1

Affiliation:

1. Department of Computer Engineering and Information Technology, Bushehr Branch, Islamic Azad University , Bushehr , Iran

2. Department of Electronics Technology Engineering, Pishtazan of University , Shiraz , Iran

Abstract

AbstractLink prediction is one of the methods of social network analysis. Bipartite networks are a type of complex network that can be used to model many natural events. In this study, a novel similarity measure for link prediction in bipartite networks is presented. Due to the fact that classical social network link prediction methods are less efficient and effective for use in bipartite network, it is necessary to use bipartite network-specific methods to solve this problem. The purpose of this study is to provide a centralized and comprehensive method based on the neighborhood structure that performs better than the existing classical methods. The proposed method consists of a combination of criteria based on the neighborhood structure. Here, the classical criteria for link prediction by modifying the bipartite network are defined. These modified criteria constitute the main component of the proposed similarity measure. In addition to low simplicity and complexity, this method has high efficiency. The simulation results show that the proposed method with a superiority of 0.5% over MetaPath, 1.32% over FriendLink, and 1.8% over Katz in thef-measure criterion shows the best performance.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3