UAV patrol path planning based on machine vision and multi-sensor fusion

Author:

Chen Xu1

Affiliation:

1. Guangdong Energy Group Science and Technology Research Institute Co., Ltd , Guangzhou 510000, Guangdong , China

Abstract

Abstract With the rapid development of unmanned aerial vehicle (UAV) technology, there are more and more fields of UAV application. This research mainly discusses the UAV patrol path planning based on machine vision and multi-sensor fusion. This article studies how to apply ultrasonic, a classic ranging sensor, to obstacle avoidance of UAVs. The designed ultrasonic obstacle avoidance system is a complete set of hardware and software systems. The hardware part consists of a forward ultrasonic module and a central signal processing module. Among them, a single-axis stabilization gimbal is designed for the forward ultrasonic module, which decouples the attitude angle of the UAV and the pitch detection angle of the ultrasonic sensor. In the central signal processing module, Kalman filtering is performed on the ultrasonic data in the four directions of front, rear, left, right, and left, and the obstacle avoidance control signal is sent to the flight controller according to the filtered sensor data. At the same time, a human–computer interaction interface is also designed to set various parameters of the obstacle avoidance system. For the route planning method of the tower, the routine steps are used to inspect the tower with a single-circuit line, and the specific targets are the insulator string, the ground wire, and the conductor. In this study, the average statistical result of the straight-line distance of the UAV patrolling 100 m is 99.80 m, and the error is only 0.2%. The fusion obstacle avoidance control method based on machine vision is suitable for the engineering application of UAV perception obstacle avoidance. The obstacle avoidance method adopted in this article can be extended to most flight control platforms, and it is a control method with broad application prospects.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3