The role of the Mpv17 protein mutations of which cause mitochondrial DNA depletion syndrome (MDDS): lessons from homologs in different species

Author:

Löllgen Stefanie,Weiher Hans

Abstract

Abstract Mitochondrial DNA depletion syndromes (MDDS) are severe pediatric diseases with diverse clinical manifestations. Gene mutations that underlie MDDS have been associated with alterations in the mitochondrial DNA (mtDNA) replication machinery or in mitochondrial deoxyribonucleoside triphosphate pools. However, the nuclear gene MPV17, whose mutated forms are associated with hepatocerebral MDDS in humans, plays a so-far unknown role in mtDNA maintenance. A high degree of conservation has been determined between MPV17 and its mouse (Mpv17), zebrafish (tra) and yeast (SYM1) homologs, respectively, whereby mutants in these cause very different phenotypes. While dysfunction in this gene in humans causes fatal liver disease, kidney pathology is induced in mice. Moreover, in zebrafish inactivation of the Mpv17 homolog was detected as a viable dyscolouration mutant. Knock out of the yeast ortholog results in a temperature-sensitive metabolic growth phenotype. Detailed analyses on common denominators between these different phenotypes strengthen the hypothesis that the Mpv17 protein forms a channel in the inner mitochondrial membrane, allowing small molecules – in vertebrates probably nucleotides, and in yeast probably intermediates of the tricarboxylic acid cycle – to pass. Moreover, a function modifying the pathologic manifestations of MPV17-related disease in mice has been identified. This signaling pathway remarkably involves the non-mitochondrial catalytic subunit of DNA-dependent protein kinase (PRKDC), important in double-strand break repair resistance against reactive oxygen-induced genotoxic stress.

Publisher

Walter de Gruyter GmbH

Subject

Clinical Biochemistry,Molecular Biology,Biochemistry

Reference136 articles.

1. Nuclear complementation restores mtDNA levels in cultured cells from a patient with mtDNA depletion;Bodnar;Am Hum Genet,1993

2. Mechanisms of lipid peroxidation Free;Girotti;Biol Med,1985

3. Course of renal injury in the deficient transgenic mouse;Bryan;Am Soc Nephrol,2000

4. Defects in mitochondrial DNA replication and human disease;Copeland;Crit Rev Biochem Mol Biol,2012

5. Membrane of the kDa integral peroxisomal membrane protein;Kaldi;Topology FEBS Lett,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3