Heterologous expression of a plant WRKY protein confers multiple stress tolerance in E. coli Bir bitkinin heterolog ifadesi WRKY proteini çoklu stres yaratır E. coli’de tolerans

Author:

Deeba Farah12,Sultana Tasawar34,Majeed Nadia3,Naqvi Syed Muhammad Saqlan35

Affiliation:

1. Department of Biochemistry, PMAS Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan

2. Department of Biochemistry and Biotechnology, The Women University, Multan, Pakistan, Phone: +92 332 5964990, e-mail: farahdiba31@gmail.com

3. Department of Biochemistry, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan

4. Department of Biochemistry, Hazara University, Mansehra, Pakistan

5. Bacha Khan University, Charsadda, Pakistan

Abstract

AbstractObjectiveOsWRKY71, a WRKY protein from rice, is reported to function during biotic stresses. It is requisite to further enquire the efficiency and mechanism of OsWRKY71 under various environmental stresses. Stress indicators such as salt, cold, heat, and drought were studied by overexpressing the OsWRKY71 in E. coli.Materials and methodsDNA binding domain containing region of OsWRKY71 was cloned and expressed in E. coli followed by exposure to stress conditions. OsWRKY71 was also assessed for its role in abiotic stresses in rice by qPCR.ResultsRecombinant E. coli expressing OsWRKY71 was more tolerant to stresses such as heat, salt and drought in spot assay. The tolerance was further confirmed by monitoring the bacterial growth in liquid culture assay demonstrating that it encourages the E. coli growth under salt, drought, and heat stresses. This tolerance may be the consequence of OsWRKY71 interaction with the promoter of stress related genes or with other proteins in bacteria. The RT-qPCR analysis revealed the up-regulation of OsWRKY71 gene in rice upon interaction to cold, salt, drought and wounding with maximum up-regulation against salinity.ConclusionThus, the defensive role of OsWRKY71 may accord to the development and survival of plants during different environmental stresses.

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry (medical),Clinical Biochemistry,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3