Model Hybrid for Sales Forecast for the Housing Market of São Paulo

Author:

Moro Matheus Fernando1ORCID,Weise Andreas Dittmar2ORCID,Bornia Antonio Cezar1ORCID

Affiliation:

1. Department of Production Engineering and Systems , Federal University of Santa Catarina , Brazil

2. Department of Industrial Engineering , Hochschule 21 , Harburger , Germany

Abstract

Abstract This research proposes a combined model of time series for forecasting housing sales in the city of São Paulo. We used data referring to the time series of sales of residential units provided by SECOVI-SP. The Exponential Softening, Box-Jenkins and Artificial Neural Networks models are individually modelled, later these are combined through five forecast combination techniques. The techniques used are Arithmetic Mean, Geometric Mean, Harmonic Mean, Linear Regression and Principal Component Analysis. The measures of accuracy to measure the results obtained and to select the best model are the RMSE, MAPE and UTheil of forecast. The results showed that Linear Regression with an independent variable, being a combination of the SARIMA model (2,0,0)(2,0,0)12 and MLP/RNA (12,10,1), provided a satisfactory performance, with an RMSE of 368.74, MAPE of 19.2% and UTheil of 0.315. The combination of time series models allowed a significant increase in forecast performance. Finally, the model was validated, using it to predict housing sales. The results show that the model has a good fit, thus demonstrating that using a housing sales forecasting model helps industry professionals minimize error and make sales and launch decisions.

Publisher

Walter de Gruyter GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3