Spatially Informed Back-Calculation for Spatio-Temporal Infectious Disease Models

Author:

Pokharel Gyanendra1,Deardon Rob12

Affiliation:

1. Department of Mathematics and Statistics, Faculty of Science, University of Calgary , Calgary , Canada

2. Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary , Calgary , Canada

Abstract

Abstract In epidemiological studies, the complete history of the disease system is seldom available; for example, we rarely observe the infection times of individuals but rather dates of diagnosis/disease reporting. The method of back-calculation together with prior knowledge about the distribution of the time from the infection to the disease reporting, called the incubation period, can be used to estimate unobserved infection times. Here, we consider the use of back-calculation in the context of spatial infectious disease models, extending the method to incorporate spatial information in the back-calculation method itself. Such a method should improve the quality of the fitted model, allowing us to better identify characteristics of the disease system of interest. We show that it is possible to better infer the underlying disease dynamics via the method of spatial back-calculation.

Publisher

Walter de Gruyter GmbH

Reference21 articles.

1. Aalen O., V. Farewell, D. De Angelis, N. Day, and O. Gill. 1997. “A Markov Model for HIV Disease Progression Including the Effect of HIV Diagnosis and Treatment: Application to AIDS Prediction in England and Wales.” Statistics in Medicine 16 (19): 2191–210.

2. Becker N., L. Watson, and J. B. Carlin. 1991. “A Method of Non-parametric Back-Projection and Its Application to AIDS Data.” Statistics in Medicine 10: 1527–42.

3. Brookmeyer R. and M. H. Gail. 1994. Monographs in Epidemiology and Biostatistics AIDS Epidemiology: A Quantitative Approach. Oxford University Press.

4. Brown S., A. Csinos, J. C. Daíz-Pérez, R. Gitaitis, S. S. LaHue, J. Lewis, N. Martinez, et al. 2005. “Tospoviruses in Solanaceae and Other Crops in the Coastal Plain of Georgia.” ResearchReport 704, College of Agricultural and Environmental Sciences, University of Georgia, pages 704–19.

5. Deardon R., S. Brooks, T. Grenfell, M. Keeling, M. Tildesley, N. Savill, D. Shaw, et al. 2010. “Inference for individual-level models of infectious diseases in large populations.” Statistica Sinica 20: 239–61.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3