Analysis of impact load on tubing and shock absorption during perforating

Author:

Deng Qiao1,Zhang Hui1,Li Jun1,Hou Xuejun2,Wang Hao1

Affiliation:

1. China University of Petroleum , Beijing , China

2. Chongqing University of Science & Technology , Chongqing China

Abstract

Abstract During the past few decades, the technologies of the higher-shot densities, larger perforating guns and tubing-conveyed perforation (TCP) combined well testing have been used widely used for well completions. This results in a large increase of impact loads in the tubing during TCP. The safety of the tubing is directly related to the success of perforation combined well test,which is the key link in the oil and gas production. In this study, the influence factors of perforating impact load have firstly been analyzed. Also the dynamic response of tubing during TCP in three dimensions has been studied by numerical simulation. According to the computing results, the vulnerable parts of tubing during TCP have been found, where the axial impact load is the strongest and it is concluded that the axial shock absorber has the optimal installation position to achieve the best shock absorption effect, which is verified by the case. This study proposes a novel method for the safety analysis of the tubing, which has important significance to provide guidance for the design of field perforating operations and to improve security.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3