Construction of complex networks from time series based on the cross correlation interval

Author:

Feng Chen1,He Bo1

Affiliation:

1. College of Information Science and Engineering, Ocean University of China, 238 Songling Road, Laoshan District, QingDao, ShanDong, China

Abstract

AbstractIn this paper, a new approach to map time series into complex networks based on the cross correlation interval is proposed for the analysis of dynamic states of time series on different scales. In the proposed approach, a time series is divided into time series segments and each segment is reconstructed to a phase space defined as a node of the complex network. The cross correlation interval, which characterizes the degree of correlation between two phase spaces, is computed as the distance between the two nodes. The clustering coefficient and efficiency are used to determine an appropriate threshold for the construction of a complex network that can effectively describe the dynamic states of a complex system. In order to verify the efficiency of the proposed approach, complex networks are constructed for time series generated from the Lorenz system, for white Gaussian noise time series and for sea clutter time series. The experimental results have demonstrated that nodes in different communities represent different dynamic states . Therefore, the proposed approach can be used to uncover the dynamic characteristics of the complex systems.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

Reference31 articles.

1. Detecting strange attractors in turbulence;Lecture Notes in Mathematics,1981

2. Recurrence plots revisited;Physica D,1997

3. Complex network from pseudoperiodic time series: topology versus dynamics;Phys. Rev. Lett,2006

4. Multi-frequency complex network from time series for uncovering oil-water flow structure;Scientific Reports,2015

5. The role of fluctuating modes of autocorrelation in crude oil prices;Physica A,2014

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3