Information retrieval algorithm of industrial cluster based on vector space

Author:

Li Rongsheng1,Hassan Nasruddin2

Affiliation:

1. School of Economic and Management, Northwest University , Xi’an , 710127 China

2. School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia UKM Bangi , Selangor , Malaysia

Abstract

Abstract The current information retrieval research on industrial clusters has low precision, low recall ratio, obvious delay and high energy consumption. Thus, in this paper, a information retrieval algorithm based on vector space for industrial clusters is proposed. By optimizing the unlawful labels in the database network, dividing the web pages of the industrial cluster information database and calculating the keyword scores of the relevant information of the industrial cluster corresponding to a web page, a set of well-divided database pages is obtained, and the purification of the industrial cluster information database is realized. According to the purification of industrial cluster information database, RFD algorithm is used to extract the page data features of purified industrial cluster information database. The extracted results are substituted into the information retrieval, and the vectors composed of retrieval units are used to describe the information of various types of industrial clusters and each retrieval. The matching results of information retrieval are obtained by calculating the correlation between the information of industrial clusters and the query, and the information retrieval of industrial clusters is completed. Experimental results show that the algorithm has high precision and recall ratio, short retrieval time and low energy consumption.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

Reference21 articles.

1. Wu Z., Gao K., Wang Z., Wei C., Wali F., Zan G. et al., Direct information retrieval after 3D reconstruction in grating-based X-ray phase-contrast computed tomography, J. Synchr. Radiat., 2018, 25(Pt 4), 1222-1228.

2. Li G.L., Chen J.L., Liu B., Yin Y., Zhang H.B., Cross-media retrieval of online product based on tag-rank and CCA, Sci. Technol. Eng., 2016, 16(14), 222-227.

3. Lu N., Gao Q.M., An algorithm for retrieving internet tourism resources based on mixed feature threshold, B Sci. Technolo., 2017, 33(8), 162-165.

4. Hu J.H., Qin Z.C., Shi L., Lu Z., Zhou B., Research on spatial information cloud service platform and application, J. China Acad. Electron. Inf. Tech., 2016, 11(1), 51-58.

5. Zhang X.M., Qi W., Zhang J., Gui X.Q., T-STAR: Keywords-based temporal information retrieval method over relational databases, Appl. Res. Comput., 2017, 34(10), 3051-3056.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3