Shooting method analysis in wire coating withdrawing from a bath of Oldroyd 8-constant fluid with temperature dependent viscosity

Author:

Khan Zeeshan,Rasheed Haroon Ur,Ullah Murad,Khan Ilyas,Alkanhal Tawfeeq Abdullah,Tlili Iskander

Abstract

Abstract The most important plastic resins used in wire coating are high/low density polyethylene (LDPE/HDPE), plasticized polyvinyl chloride (PVC), nylon and polysulfone. To provide insulation and mechanical strength, coating is necessary for wires. Simulation of polymer flow during wire coating dragged froma bath of Oldroyd 8-constant fluid incompresible and laminar fluid inside pressure type die is carried out numerically. In wire coating the flow depends on the velocity of the wire, geometry of the die and viscosity of the fluid.The non-dimensional resulting flow and heat transfer differential equations are solved numerically by Ruge-Kutta 4th-order method with shooting technique. Reynolds model and Vogel’s models are encountered for temperature dependent viscosity. The numerical solutions are obtained for velocity field and temperature distribution. The solutions are computed for different physical parameters.It is observed that the non-Newtonian propertis of fluid were favourable, enhancing the velocity in combination with temperature dependent variable. The Brinkman number contributes to increase the temperature for both Reynolds and Vogel’smodels. With the increasing of pressure gradient parameter of both Reynolds and Vogel’s models, the velocity and temperature profile increases significantly in the presence of non-Newtonian parameter. Furthermore, the present result is also compared with published results as a particular case.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3