Erlang Strength Model for Exponential Effects

Author:

Gökdere Gökhan1,Gürcan Mehmet1

Affiliation:

1. 1Department of Statistics, Fırat University, 23119, Elazığ, Turkey

Abstract

AbstractAll technical systems have been designed to perform their intended tasks in a specific ambient. Some systems can perform their tasks in a variety of distinctive levels. A system that can have a finite number of performance rates is called a multi-state system. Generally multi-state system is consisted of components that they also can be multi-state. The performance rates of components constituting a system can also vary as a result of their deterioration or in consequence of variable environmental conditions. Components failures can lead to the degradation of the entire multi-state system performance. The performance rates of the components can range from perfect functioning up to complete failure. The quality of the system is completely determined by components. In this article, a possible state for the single component system, where component is subject to two stresses, is considered under stress-strength model which makes the component multi-state. The probabilities of component are studied when strength of the component is Erlang random variables and the stresses are independent exponential random variables. Also, the probabilities of component are considered when the stresses are dependent exponential random variables.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of structures of the aircraft fire alarm system by means of nested modules;Eastern-European Journal of Enterprise Technologies;2019-04-08

2. Dynamic reliability evaluation for a multi-state component under stress-strength model;The Journal of Nonlinear Sciences and Applications;2017-02-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3