Affiliation:
1. Department of Computing Science , Umeå University , Sweden
Abstract
Abstract
In this article, we present work on collaborating robot teams that use verbal explanations of their actions and intentions in order to be more understandable to the human. For this, we introduce a mechanism that determines what information the robots should verbalize in accordance with Grice’s maxim of quantity, i.e., convey as much information as is required and no more or less. Our setup is a robot team collaborating to achieve a common goal while explaining in natural language what they are currently doing and what they intend to do. The proposed approach is implemented on three Pepper robots moving objects on a table. It is evaluated by human subjects answering a range of questions about the robots’ explanations, which are generated using either our proposed approach or two further approaches implemented for evaluation purposes. Overall, we find that our proposed approach leads to the most understanding of what the robots are doing. In addition, we further propose a method for incorporating policies driving the distribution of tasks among the robots, which may further support understandability.
Subject
Behavioral Neuroscience,Artificial Intelligence,Cognitive Neuroscience,Developmental Neuroscience,Human-Computer Interaction
Reference18 articles.
1. T. Hellström and S. Bensch, “Understandable robots – what, why, and how,” Paladyn, Journal of Behavioral Robotics, vol. 9, pp. 110–123, 2018.
2. S. Bensch, A. Jevtić and T. Hellström, “On interaction quality in human-robot interaction,” Proceedings of the 9th International Conference on Agents and Artificial Intelligence, ICAART, Porto, Portugal, vol. 2, pp. 182–189, 2017.
3. H. Yanco and J. Drury, “Classifying human-robot interaction: an updated taxonomy,” in IEEE International Conference on Systems, Man and Cybernetics, 2004, pp. 2841–2846.
4. M. A. Goodrich and A. C. Schultz, “Human-robot interaction: a survey,” Foundations and Trends in Human-Computer Interaction, vol. 1, pp. 203–275, 2008.
5. S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Banerjee, S. Teller, and N. Roy, “Approaching the symbol grounding problem with probabilistic graphical models,” AI Magazine, vol. 32, pp. 64–76, 2011.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献