Acacetin improves cognitive function of APP/PS1 Alzheimer’s disease model mice via the NLRP3 inflammasome signaling pathway

Author:

Bu Juan1,Zhang Yanmin2,Mahan Yeledan1,Shi Shen3,Wu Xuanxia1,Zhang Xiaoling1,Wang Zhaoxia1,Zhou Ling1

Affiliation:

1. Medical Research and Transformation Center, People’s Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Rd. , Urumqi , Xinjiang 830001 , PR China

2. Scientific Research and Education Center, People’s Hospital of Xinjiang Uygur Autonomous Region , Urumqi , Xinjiang 830001 , PR China

3. Disinfection and Infection Control Center, Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region , Urumqi , Xinjiang 830002 , PR China

Abstract

Abstract Background Acacetin (5,7-dihydroxy-4′-methoxyflavone), one of the main extractions from Saussurea involucrata, has anti-inflammatory effects. Our previous study found that acacetin inhibited the Nod-like receptor pyrin domain containing 3 (NLRP3) signaling pathway after cerebral ischemia–reperfusion injury. NLRP3 inflammasome plays a role in Alzheimer’s disease (AD) process. However, few studies have examined the effects of acacetin in AD. Methods We randomly divided APP swe/PS1dE9 double transgenic mice into acacetin group (intraperitoneal injection of 25 mg/kg acacetin) and AD model group (intraperitoneal injection of same volume of saline). C57BL/6 mice were selected as control group (same treatment with AD model group). After treating for 30 days, a Morris water maze test was conducted to evaluate spatial learning and memory of the mice. Senile plaque (SP) formation was evaluated by immunohistochemistry. NLRP3 inflammasome-related inflammatory factors and amyloid-β-42 were detected by Western blot or enzyme-linked immunosorbent assay. Results Acacetin improved spatial learning and memory of AD mice and reduced APP/β expression, thereby decreasing SP formation in the brain. Acacetin also reduced the expression of NLRP3, cysteinyl aspartate-specific proteinase 1 (caspase-1), and interleukin-1β (IL-1β) and the release of inflammatory factors, tumor necrosis factor-α (TNF-α) and IL-1β. Conclusions Acacetin improved the learning and memory abilities of AD mice and exerted a protective effect on AD by inhibiting the NLRP3 signaling pathway and reducing SP formation.

Publisher

Walter de Gruyter GmbH

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3