Embelin and levodopa combination therapy for improved Parkinson’s disease treatment

Author:

Ramachandra Vagdevi Hangarakatte12,Sivanesan Senthilkumar1ORCID,Koppal Anand12,Anandakumar Shanmugam31,Howell Matthew D.4,Sukumar Ethirajan1,Vijayaraghavan Rajagopalan1

Affiliation:

1. Department of Research and Development, Saveetha Institute of Medical and Technical Sciences , Chennai 602105 , Tamilnadu , India

2. Department of Pharmacology, Subbaiah Institute of Medical Sciences and Research Centre , Shivamogga 577222 , Karnataka , India

3. Department of Phytoinformatics, Yukai Care Solutions LLP , Chennai 600011 , Tamilnadu , India

4. Department of Biomedical Sciences, Iowa State University , Ames , IA, 50011 , United States of America

Abstract

Abstract Parkinson’s disease (PD), a progressive neurodegenerative disorder, affects dopaminergic neurons. Oxidative stress and gut damage play critical roles in PD pathogenesis. Inhibition of oxidative stress and gut damage can prevent neuronal death and delay PD progression. The objective of this study was to evaluate the therapeutic effect of embelin or the combination with levodopa (LD) in a rotenone-induced PD mouse model. At the end of experimentation, the mice were sacrificed and the midbrain was used to evaluate various biochemical parameters, such as nitric oxide, peroxynitrite, urea, and lipid peroxidation. In the substantia nigra (midbrain), tyrosine hydroxylase (TH) expression was examined by immunohistochemistry, and Nurr1 expression was evaluated by western blotting. Gut histopathology was evaluated on tissue sections stained with hematoxylin and eosin. In silico molecular docking studies of embelin and α-synuclein (α-syn) fibrils were also performed. Embelin alone or in combination with LD ameliorated oxidative stress and gut damage. TH and Nurr1 protein levels were also significantly restored. Docking studies confirmed the affinity of embelin toward α-syn. Taken together, embelin could be a promising drug for the treatment of PD, especially when combined with LD.

Publisher

Walter de Gruyter GmbH

Subject

General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3