Therapeutic value of the metabolomic active neurotransmitter isorhynchophylline in the treatment of spontaneously hypertensive rats by regulating neurotransmitters

Author:

Alharbi Homood1,Ahmad Mohammad1,Tian Zhenhua2,Yu Ruixue2,Li Yun Lun2

Affiliation:

1. Department of Medical Surgical Nursing, College of Nursing, King Saud University , Riyadh , Saudi Arabia

2. Department of Pharmaceutical Sciences, Traditional Chinese Medicine, Shandong University , Jinan , China

Abstract

Abstract Hypertension is one of the most reported cardiovascular and cerebrovascular diseases with significantly high morbidity and mortality rates. This condition threatens the very existence of human beings. Numerous studies conducted earlier revealed the good therapeutic effect of isorhynchophylline on hypertension since the former regulates the metabolic disorders in neurotransmitters. However, the mechanism behind this action is yet to be deciphered. The current study followed the targeted metabolomics method to investigate the changes in the neurotransmitter level in the hippocampus of spontaneously hypertensive rats (SHRs) after the rats were treated with isorhynchophylline. The authors predicted the metabolic pathways involved in extensively modified neurotransmitters. Further, the expressions of metabolism-key enzymes in mRNA and protein levels were also determined. When treated with isorhynchophylline, it induced notably varying metabolomic profiles of the hippocampus in SHRs. Isorhynchophylline perturbed a total of seven extensively modified neurotransmitters as well as the primarily related pathways such as tyrosine and glutamate metabolism. An increase in the key metabolic enzymes such as DDC, MAO, COMT, TH, and DβH was observed in the SHR group, whereas their levels decreased after treatment with isorhynchophylline. The expression of GAD67 established cross-current validity. So, isorhynchophylline has been proved to have potential therapeutic value to treat hypertension via tyrosine and glutamate metabolism in the hippocampus. Further, the current study also opened new ventures to further investigate the working mechanism of isorhynchophylline in hypertension.

Publisher

Walter de Gruyter GmbH

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3