A novel strategy for driving car brain–computer interfaces: Discrimination of EEG-based visual-motor imagery

Author:

Zhou Zhouzhou12,Gong Anmin3,Qian Qian12,Su Lei12,Zhao Lei24,Fu Yunfa12

Affiliation:

1. Department of Automation, Faculty of Information Engineering and Automation, Kunming University of Science and Technology , Kunming , 650500 , China

2. Brain Cognition and Brain-computer Intelligence Integration Group, Kunming University of Science and Technology , Kunming , 650500 , China

3. Department of Communication Engineering, School of Information Engineering, Chinese People’s Armed Police Force Engineering University , Xi’an , 710000 , China

4. Department of Electronic Science and Applied Physics, Faculty of Science, Kunming University of Science and Technology , Kunming , 650500 , China

Abstract

Abstract A brain–computer interface (BCI) based on kinesthetic motor imagery has a potential of becoming a groundbreaking technology in a clinical setting. However, few studies focus on a visual-motor imagery (VMI) paradigm driving BCI. The VMI-BCI feature extraction methods are yet to be explored in depth. In this study, a novel VMI-BCI paradigm is proposed to execute four VMI tasks: imagining a car moving forward, reversing, turning left, and turning right. These mental strategies can naturally control a car or robot to move forward, backward, left, and right. Electroencephalogram (EEG) data from 25 subjects were collected. After the raw EEG signal baseline was corrected, the alpha band was extracted using bandpass filtering. The artifacts were removed by independent component analysis. Then, the EEG average instantaneous energy induced by VMI (VMI-EEG) was calculated using the Hilbert–Huang transform (HHT). The autoregressive model was extracted to construct a 12-dimensional feature vector to a support vector machine suitable for small sample classification. This was classified into two-class tasks: visual imagination of driving the car forward versus reversing, driving forward versus turning left, driving forward versus turning right, reversing versus turning left, reversing versus turning right, and turning left versus turning right. The results showed that the average classification accuracy of these two-class tasks was 62.68 ± 5.08%, and the highest classification accuracy was 73.66 ± 6.80%. The study showed that EEG features of O1 and O2 electrodes in the occipital region extracted by HHT were separable for these VMI tasks.

Publisher

Walter de Gruyter GmbH

Subject

General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3