Author:
Chen Duo,Nie Zhao-Bo,Chi Zhi-Hong,Wang Zhan-You,Wei Xiang-Tai,Guan Jun-Hong
Abstract
Abstract
Background
The pathophysiology of early brain injury (EBI) after subarachnoid hemorrhage (SAH) is poorly understood. The present study evaluates the influence of zinc transporter 3 (ZnT3) knockout and the depletion of vesicular zinc on EBI.
Methodology
SAH was induced in ZnT3 KO mice by internal carotid artery perforation. The changes in behavior were recorded at 24 hours after SAH. Hematoxylin-eosin, Nissl and TUNEL staining were performed to evaluate neuronal apoptosis. Data from mice with a score of 8-12 in intracerebral bleeding (i.e. moderate SAH), were analyzed.
Results
The degree of SAH-induced neuronal injury was directly correlated to the amount of blood lost, which in turn was negatively reflected in their behavior. The Wild Type (WT)-SAH group behaved poorly when compared to the knockout (KO)-SAH mice and their poor neurological score was accompanied by an increase in the number of apoptotic neurons. Conversely, the improvement of behavior in the KO-SAH group was associated with a marked reduction in apoptotic neurons.
Conclusions
These results suggest that ZnT3 knockout may have played a vital role in the attenuation of neuronal injury after SAH and that ZnT3 may prove to be a potential therapeutic target for neuroprotection in EBI.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献