Notoginsenoside R1 attenuates sevoflurane-induced neurotoxicity

Author:

Zhang Yibing1,Zhao Yong2,Ran Yongwang3,Guo Jianyou4,Cui Haifeng2,Liu Sha1

Affiliation:

1. Comprehensive Teaching and Research Office of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 401331, People’s Republic of China

2. GLP Laboratory, Institute of Chinese Materia Medica, China Academy of Traditional Chinese Medicine, Beijing, 100700, People’s Republic of China

3. Department of Radiology, Qianjiang Central Hospital of Chongqing, Chongqing, 409099, People’s Republic of China

4. Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China

Abstract

AbstractBackgroundSevoflurane, a volatile anesthetic, is known to induce widespread neuronal degeneration and apoptosis. Recently, the stress-inducible protein sestrin 2 and adenosine monophosphate-activated protein kinase (AMPK) have been found to regulate the levels of intracellular reactive oxygen species (ROS) and suppress oxidative stress. Notoginsenoside R1 (NGR1), a saponin isolated from Panax notoginseng, has been shown to exert neuroprotective effects. The effects of NGR1 against neurotoxicity induced by sevoflurane were assessed.MethodsSprague-Dawley rat pups on postnatal day 7 (PD7) were exposed to sevoflurane (3%) anesthesia for 6 h. NGR1 at doses of 12.5, 25, or 50 mg/kg body weight was orally administered to pups from PD2 to PD7.ResultsPretreatment with NGR1 attenuated sevoflurane-induced generation of ROS and reduced apoptotic cell counts. Western blotting revealed decreased cleaved caspase 3 and Bad and Bax pro-apoptotic protein expression. NGR1 substantially upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression along with increased heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase-1 levels, suggesting Nrf2 signaling activation. Enhanced sestrin-2 and phosphorylated AMPK expression were noticed following NGR1 pretreatment.ConclusionThis study revealed the neuroprotective effects of NGR1 through effective suppression of apoptosis and ROS via regulation of apoptotic proteins and activation of Nrf2/HO-1 and sestrin 2/AMPK signaling cascades.

Publisher

Walter de Gruyter GmbH

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3