Affiliation:
1. Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine , Tallahassee , Florida , United States of America
Abstract
Abstract
A novel pulsatile-perfusion technology, dubbed BrainEx, has been shown to restore microcirculation and cellular functions in the pig brain, 4 h postmortem. This technology has generated enthusiasm for its translational value for human neuroresuscitation. I offer a critical analysis of the study and its methodology, providing several reasons for skepticism. This includes: all phenomena were observed at different degrees of hypothermia; the physiological and biochemical milieu of the experimental preparation is radically different than the clinical setting of hypoxic-ischemic brain injury; and the study is confounded by uncontrolled traumatic brain injury and lifelong stress in all the animals.
Reference21 articles.
1. Vrselja Z, Daniele SG, Silbereis J, Talpo F, Morozov YM, Sousa AM, et al. Restoration of brain circulation and cellular functions hours post-mortem. Nature. 2019 Apr;568(7752):336–43.
2. Youngner S, Hyun I. Pig experiment challenges assumptions around brain damage in people. Nature. 2019;568(7752):302–4.
3. Farahany NA, Greely HT, Giattino CM. Part-revived pig brains raise slew of ethical quandaries. Nature. 2019 Apr;568(7752):299–302.
4. Shaer M. Scientists are giving dead brains new life. What could go wrong? New York City, NY: The New York Times Magazine; 2019 July 2. Available from: https://www.nytimes.com/2019/07/02/magazine/dead-pig-brains-reanimation.html
5. University of Illinois Extension [Internet]. What is a pig’s normal body temperature? Urbana: University of Illinois Board of Trustees; 2002 Nov 7 [cited 2021 Jun 7]. Available from: http://livestocktrail.illinois.edu/porknet/questionDisplay.cfm?ContentID=4545