A custom-made weight-drop impactor to produce consistent spinal cord injury outcomes in a rat model

Author:

Jarragh Ali1,Shuaib Ali2,Al-Khaledi Ghanim3,Alotaibi Fatima1,Al-Sabah Sulaiman3,Masocha Willias4

Affiliation:

1. Department of Surgery, Faculty of Medicine, Kuwait University , Kuwait City , Kuwait

2. Department of Physiology, Faculty of Medicine, Biomedical Engineering Unit, Kuwait University , Kuwait City , Kuwait

3. Department of Pharmacology & Toxicology, Faculty of Pharmacy, Kuwait University , Kuwait City , Kuwait

4. Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University , Kuwait City , Kuwait

Abstract

Abstract Objective The main objective of this study is to design a custom-made weight-drop impactor device to produce a consistent spinal cord contusion model in rats in order to examine the efficacy of potential therapies for post-traumatic spinal cord injuries (SCIs). Methods Adult female Sprague-Dawley rats (n = 24, 11 weeks old) were randomly divided equally into two groups: sham and injured. The consistent injury pattern was produced by a 10 g stainless steel rod dropped from a height of 30 mm to cause (0.75 mm) intended displacement to the dorsal surface of spinal cord. The neurological functional outcomes were assessed at different time intervals using the following standardized neurobehavioral tests: Basso, Beattie, and Bresnahan (BBB) scores, BBB open-field locomotion test, Louisville Swim Scale (LSS), and CatWalk gait analysis system. Results Hind limb functional parameters between the two groups using BBB scores and LSS were significantly different (p < 0.05). There were significant differences (p < 0.05) between the SCI group and the sham group for the hind limb functional parameters using the CatWalk gait analysis. Conclusion We developed an inexpensive custom-made SCI device that yields a precise adjustment of the height and displacement of the impact relative to the spinal cord surface.

Publisher

Walter de Gruyter GmbH

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3