Saikosaponin A attenuates neural injury caused by ischemia/reperfusion

Author:

Wang Xinying1,Yang Guofeng2

Affiliation:

1. Department of Neurology, Hebei Medical University, No. 361, East Zhongshan Road, Shijiazhuang 050017, Hebei, China; Department of Neurology, Harrison International Peace Hospital, No.180, East Renmin Road, Hengshui 053000, Hebei, China

2. Department of Geriatrics, Second Hospital of Hebei Medical University, No. 215, West Heping Road, Shijiazhuang 050000, Hebei, China

Abstract

AbstractBackgroundInflammation is involved in cerebral ischemia/reperfusion (I/R)-induced neurological damage. Saikosaponin A (SSa), extracted from Radix bupleuri, has been reported to exert anti-inflammatory effects. This article aimed to investigate whether SSa could ameliorate neuroinflammation mediated by ischemic stroke and the underlying mechanism.MethodsRat middle cerebral artery occlusion (MCAO) model was employed in this study, and the cognitive and motor functions were detected by behavioral tests. Inflammatory cytokines in the serum were detected by ELISA kits. The expression levels of Toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB), and high-mobility group box 1 (HMGB1) in the brain tissues were assayed with Western blot.ResultsOur results showed that SSa pretreatment could significantly reduce brain damage, improve neurological function recovery, and decrease the water content of brain tissues when compared with the model group. SSa pretreatment significantly reduced the serum HMGB1 level and downregulated the contents of inflammatory cytokines including tumor necrosis factor-α, interleukin-1 beta, and interleukin-6. Furthermore, SSa pretreatment could attenuate the decreased TLR4 and nucleus NF-κB in the brain of MCAO rats. The protein level of HMGB1 in the nucleus was significantly upregulated in the SSa pretreatment group.ConclusionOur results suggested that the pretreatment with SSa provided significant protection against cerebral I/R injury in rats via its anti-inflammation property by inhibiting the nucleus HMGB1 release.

Publisher

Walter de Gruyter GmbH

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3