Affiliation:
1. Facultad de Ciencias Universidad Autónoma del Estado de México Instituto Literario 100 CP 50000 Toluca Mexico
Abstract
Abstract
The symbol TD(X) denotes the hyperspace of all nonempty totally disconnected compact subsets of a Hausdorff space X. This hyperspace is endowed with the Vietoris topology. For a mapping between Hausdorff spaces f : X → Y, define the induced mapping TD(f) : TD(X) → TD(Y) by TD(f)(A) = f(A) (the image of A under f). In the current paper, we study the relationships between the condition f belongs to a class of mappings between Hausdorff spaces 𝕄 and the condition TD(f) belongs to 𝕄.
Reference9 articles.
1. Arens, R.: Note on convergence in topology, Math. Mag. 23 (1950), 229–234.
2. Engelking, R.: General topology, rev. and compl. edition, Sigma Ser. Pure Math., Vol. 6, Berlin: Heldermann Verlag, 1989.
3. Escobedo, R.—Pellicer-Covarrubias, P.—Sánchez-Gutiérrez, V.: The hyperspace of totally disconnected sets, Glas. Mat. III. Ser. 55(1)(2020), 113–128.
4. Franklin, S. P.: Spaces in which sequences suffice, Fund. Math. 57 (1965), 107–115.
5. García, Y.—Maya, D.: Induced mappings on symmetric products of Hausdorff spaces, Math. Slovaca 72(5) (2022), 1287–1300.